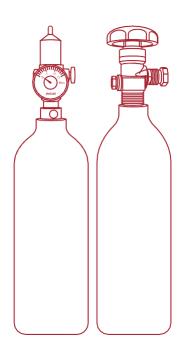
RIGAS

Research Institute of Gas Analytical Science

Calibration Gas

rigas | ONE


rigas | PAS

Gas Regulator

CONTENTS

- **03 P** Company Information
- **05 P** Maintaining Traceability / Product Line
- **06 P** Atmospheric Environmental Calibration Standards
- **07 P** Automobile Exhaust Gas Standards
- **08 P** Petrochemical and Natural Gas Standards
- **10 P** Laser Gas Mixtures
- **11 P** Odor Standards
- **12 P** Volatile Organic Compound Standards (VOCs)
- **14P** Other Gas Mixtures / Cylinder / Valve
- **15 P rigas | ONE** 1L Calibration Gas
- 16P rigas | ONE PAMS
- **17 P rigas | ONE** TO-14A
- 18 P rigas | PAS
- **19 P** RIGAS Regulator for Calibration Gas
- **20 P** 20 Components Subjected to Measure Calorific Value at Flare stack

Company Information

Company specialized in Production, **Analysis and Research of Standard Materials**

RIGAS Co., Ltd. has the capability to manufacture and analyze various specifications of liquid and gas standard materials and supplies products in which customers can trust by application of our unique special cylinder inner-surface treatment technology essential for improving stability of low concentration reactive gases.

Our company also manufactures all standard gases in gravimetric method using high precision high capacity scale and guarantees the accuracy for the concentration of every components by quantifying and verifying it with various gas analyzers.

CRM Production Agency

RIGAS Co., Ltd. has been recognized the Reference Material Producer that complies with KS A ISO 17034 standards by the Korea Laboratory Accreditation Scheme (KOLAS), an organization of the Ministry of Trade, Industry and Energy. We have 79 Certified Reference Materials (CRM) based on KOLAS reliability.

Authorized Standard Gas Testing and Certification Agency in ROK

RIGAS Co., Ltd. has been appointed as a government-authorized standard gas testing and certification agency from Korea National Institute of Environmental Research and performs testing and analysis for gaseous standard materials. (Standard gas for calibrating continuous automatic chimney exhaust gas measuring instrument and continuous automatic air measuring instrument)

Company having Corporate-affiliated Research Institute

RIGAS Co., Ltd. established Research Institute of Gas Analytical Science in 1999 on the basis of Korea Basic Research Promotion and Technology Development Supporting Act, and has performed gas analysis research actively for development of new products such as undeveloped special gases and improvement of accuracy of gas analysis.

Company Information

Company History

Dec 2021. Developing and supplying HF gas CRM in accordance with ISO 17034, KOLAS

Sep 2020. Relocating the headquater

Aug 2019. Selected as a smart factory support business (advancement)

Mar 2019. Accredited as the Reference Material Producer in accordance with ISO 17034, KOLAS

Jun 2018. Registered an International TradeMark (KR-2018-0000651)

Jul 2017. Accredited as a testing agency in accordance with ISO 17025, KOLAS

Feb 2017. Expansion of the 2nd plant in Daedeok Industrial Zone

Dec 2016. Obtained Clean mark as TOP3 of Reducing Exposure level

Jan 2014. Obtained Certificate of Good Workplace by Risk Assessment (Korea Occupational Safety & Health Agency)

Mar 2013. Selected as a hidden champion (Ministry of Employment and Labor)

Jun 2007. Obtained INNO-BIZ Certificate (Small & Medium Business Administration)

Jun 2007. Approved as Company of Daedeok Special R&D Zone (Ministry of Science and Technology)

Apr 2002. Appointed as Clean Workplace (Korea Occupational Safety & Health Agency)

Sep 2001. Appointed as Standard Gas Testing Agency by Environmental Technology Development Act (Korea National Institute of Environmental Research)

Mar 1999. Obtained Certificated of Gas Analysis and Science Research Institute as Corporate-affiliated Research Institute (Korea Industrial Technology Association)

Sep 1998. Established a corporation in Daejeon, Korea.

Certificate

ISO17034

ISO9001

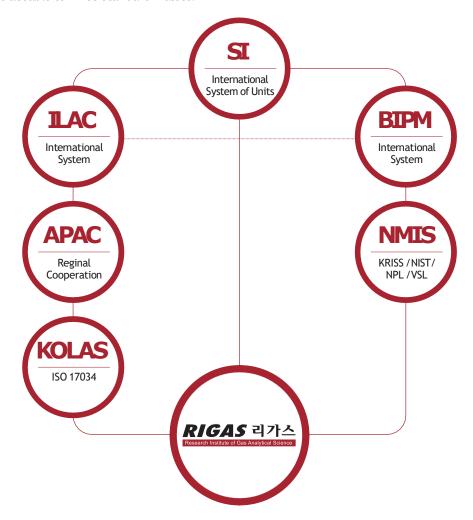
Certificate of Designated **Testing Agent**

Certificate of corporate affiliated Research Institute

Certificate of Patent1

Certificate of Patent2

Certificate of Patent3


Certificate of Patent4

Certificate of Design

Maintaining Traceability

Our analytical operations are traceable through a calibration standard produced to either a recognized international standard such as KRISS, NIST, VSL, NPL or a gravimetrically manufactured Primary Reference Standard traceable to KRISS standard masses.

Product Line

- **01** Atmospheric Environmental Calibration Standards
- **02** Automobile Exhaust Gas Standards
- **03** Petrochemical and Natural Gas Standards
- **04** Laser Gas Mixtures
- **05** Odor Standards
- **06** Volatile Organic Compound Standards (VOCs)
- **07** Other Gas Mixtures
- 08 rigas | ONE
- 09 rigas | ONE PAMS
- **10 rigas | ONE** TO 14A
- 11 rigas | PAS (Pre Analysis System)
- 12 Rigas Regulator for Calibration gases

Atmospheric Environmental Calibration Standards

Environment is one of critical elements affecting our life.

Therefore, accurate standard gas shall be used to monitor and measure industrial effluents.

RIGAS Co., Ltd. provides high accurate calibration standard gas for measuring various environmental pollutants.

Components				
Nitric oxide	NO			
Nitrogen dioxide	NO ₂			
Sulfur dioxide	SO ₂			
Carbon monoxide	СО			
Oxygen	O2			
Hydrogen chloride	HCl			
Hydrogen fluoride	HF			
Ammonia	NH3			
Carbon dioxide	CO ₂			

Mixture Example

Comment of Malice	Nominal Fraction Range			Hrel (1.—2) 0/	
Components & Matrix	From	То	Unit	Urel (k=2) %	Shelf (year)
Hydrogen chloride	1	10,000	µmol/mol	±2 ~ ±5	1 ~ 2
Hydrogen fluoride	1	200	µmol/mol	±2 ~ ±10	1 ~ 2
Nitric oxide Sulfur dioxide	1 5,000 1 5,000 1 10,000	5,000 µmol/mol	±1 ~ ±3	1 ~ 2	
Carbon monoxide			Determined in the customer	accordance with s needs	

^{**} If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information.

E-mail: master@rigas.co.kr (Domestic-Korea), sales@rigas.co.kr (Overseas)

^{*} Urel.: relative expanded uncertainty

Automobile Exhaust Gas Standards

Environment is one of critical elements affecting our life.

Therefore, accurate standard gas shall be used to monitor and measure industrial effluents.

RIGAS Co., Ltd. provides high accurate calibration standard gas for measuring various environmental pollutants.

Components			
Carbon dioxide	CO2		
Propane	СзНв		
Carbon monoxide	СО		
Oxygen	O ₂		

Mixture Example

Commonte & Motoire	Nominal Fraction Range			Heel (1, - 2)0/	Chalf (was a)	
Components & Matrix	From	То	Unit	Urel (k=2)%	Shelf (year)	
Carbon dioxide	5.0	20.0	cmol/mol	±1 ~ ±2	1 ~ 2	
Propane	0.01	1.00	cmol/mol	'		
Carbon monoxide	0.1	5.0	cmol/mol	Determined in accordance with the customer's needs		
Oxygen	0.1	2.0	cmol/mol			
Nitric Oxide	0.01	0.5	cmol/mol			

^{*} If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information.

E-mail: master@rigas.co.kr (Domestic-Korea), sales@rigas.co.kr (Overseas)

^{*} Urel.: relative expanded uncertainty

Petrochemical and Natural Gas Standards

RIGAS standard materials for petrochemical process are supplied in gas or liquid phase. Also, multi-compounds standard materials such as alkanes, aromatics or other are available.

Group	Components		
	Methane	CH4	
	Ethane	C2H6	
	Ethylene	C2H4	
	Propane	C3H8	
	Cyclopropane	C3H6	
	Propylene	C3H6	
	iso-Butane	iso-C4H10	
	n-Butane	n-C4H10	
	Propadiene	C3H4	
	Acetylene	ΩH₂	
	trans-2-Butene	trans-2-C4H8	
	1-Butene	1-C4H8	
Underson Cos and invid Minteres	iso-Butylene	iso-C4H8	
Hydrocarbons Gas or Liquid Mixtures	Cyclopentane	C5H10	
	cis-2-Butene	cis-2-C4H8	
	2,2-Dimethyl propane	2,2-C 5H12	
	iso-Pentane	iso-C5H12	
	n-Pentane	n-C5H12	
	1,2-Butadiene	1,2-C4H6	
	1,3-Butadiene	1,3-C4H6	
	Methyl acetylene	C3H4	
	Vinyl acetylene	C4H4	
	Ethyl acetylene	C4H6	
	trans-2-Pentene	trans-2-C5H10	
	etc.		

Mixture Example - Gas Phase

Commonant O Matrice	Nominal F	Nominal Fraction Range		Chalf (accar)
Component & Matrix	Concentration	Unit	Urel (k=2) %	Shelf (year)
Nitrogen	0.50	cmol/mol		
Carbon dioxide	1.00	cmol/mol		1 ~ 2
Ethane	8.00	cmol/mol	±1 ~ ±2	
Propane	4.00	cmol/mol		
iso-Butane	1.00	cmol/mol		
n-Butane	1.00	cmol/mol		
iso-Pentane	0.05	cmol/mol		
neo-Pentane	0.05	cmol/mol	Determined in accordance with the customer's needs	
n-Pentane	0.05	cmol/mol		
n-Hexane	0.05	cmol/mol		
Methane	balance			

^{*} If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information. E-mail: master@rigas.co.kr (Domestic-Korea), sales@rigas.co.kr (Overseas)

^{*} Urel.: relative expanded uncertainty

Petrochemical and Natural Gas Standards

RIGAS standard materials for petrochemical process are supplied in gas or liquid phase. Also, multi-compounds standard materials such as alkanes, alkens, aromatics or other are available.

Mixed example-Gas Phase

cmol/mol = %mol/mol = 10-2mol/mol

Commonant & Matrix	Nominal F	raction Range	H1/1-2\0/	Chalf (was w)	
Component & Matrix	Concentration	Unit	Urel (k=2) %	Shelf (year)	
Methane	2.50	cmol/mol			
Ethane	100	cmol/mol			
Ethylene	1.00	cmol/mol	±1 ~ ±3	1 ~ 2	
Propane	0.70	cmol/mol			
Propylene	4.00	cmol/mol			
iso-Butane	1.00	cmol/mol			
n- Butane	0.30	cmol/mol			
trans-2-Butene	0.90	cmol/mol			
1-Butene	1.00	cmol/mol			
iso-Butylene	1.50	cmol/mol			
cis-2-Butene	1.00	cmol/mol	Determined in	accordance	
iso-Pentane	1.00	cmol/mol	with the custo	mer's needs	
n-Pentane	0.10	cmol/mol			
1,3-Butadiene	0.10	cmol/mol			
1-Pentene	1.00	cmol/mol			
N-Hexane	1.00	cmol/mol			
Nitrogen	balance				

Mixture Example - Liquid Phase

cmol/mol = %mol/mol = 10-2mol/mol

Common and C Matrice	Nominal F	raction Range	Heal (1, -2) 0/	Chalf (
Component & Matrix	Concentration	Unit	Urel (k=2) %	Shelf (year)	
Ethane	2.00	cmol/mol			
Ethylene	2.00	cmol/mol			
Propane	35.0	cmol/mol	±1 ~ ±3	1 ~ 2	
Cyclopropane	0.10	cmol/mol			
Propylene	1.00	cmol/mol			
iso-Butane	20.0	cmol/mol	'		
trans-2-Butene	0.20	cmol/mol			
1-Butene	0.20	cmol/mol			
iso-Butylene	0.20	cmol/mol	Liquid phase	hood prossuro)	
cis-2-Butene	0.20	cmol/mol	(Dip tube + He head pressure) Determined in accordance with the customer's needs		
iso-Pentane	0.40	cmol/mol			
n-Pentane	0.10	cmol/mol			
1,3-Butadiene	0.10	cmol/mol			
n-Butane	38.5	cmol/mol			

^{*} If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information.

E-mail: master@rigas.co.kr (Domestic-Korea), sales@rigas.co.kr (Overseas)

^{*} Urel.: relative expanded uncertainty

Laser Gas Mixtures

RIGAS excimer laser gas is used widely including semiconductor manufacturing process, medical area or precision process.

Vision Correction

PRK, LASIK ArF = 193 nm

Angioplasty &TMR

XeCl = 308 nm

Microlithography

ArF = 193 nm KrF = 248 nm

Mixture Example

cmol/mol = %mol/mol = 10⁻2mol/mol

Commonant & Matrix	Excimer Laser Gas Mixtures		
Component & Matrix	Туре	Concentration	
Fluorine Argon Neon	ArF (193 nm)	0.2 cmol/mol 9.0 cmol/mol	
Hydrogen Chloride Hydrogen Xenon Neon	XeCl (308 nm)	0.06 cmol/mol 0.03 cmol/mol 1.50 cmol/mol	
Fluorine Krypton Neon	KrF (248 nm)	0.10 cmol/mol 1.00 cmol/mol	

^{*} If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information. E-mail: master@rigas.co.kr (Domestic-Korea), sales@rigas.co.kr (Overseas)

^{*} Urel.: relative expanded uncertainty

Odor Standards

This is RIGAS standard gas for detecting and measuring odor.

Odor is caused by one or more volatile chemical materials in low density generally, which is recognized by human or animals.

Mixture Example - Gas Phase

Group	Components		
Formaldehyde	Formaldehyde HCHO		
	Hydrogen sulfide	H2S	
Cultur Compounds	Methyl mercaptan	CH3SH	
Sulfur Compounds	Dimethyl sulfide	(CH3)2S	
	Dimethyl disulfide	(CH3)2S2	
Amine Compounds	Ammonia	NH3	
Armine Compounds	Trimethyl amine	(CH3)3N	
	Acetaldehyde	CH3CHO	
	Propionaldehyde	C2H5CHO	
Aldehydes	n-Butyraldehyde	n-C3H7CHO	
·	n-Valeraldehyde	n-C4H9CHO	
	iso-Valeraldehyde	iso-C4H9CHO	
	iso-Butyl alcohol	iso-C4H9OH	
Alcohol & Ketones	Ethyl acetate	CH3CO2C2H5	
	Methyl isobutyl ketone	C4H9COCH3	
	Toluene	C7H8	
DTEVC	Styrene	C8H8	
BTEXS	p-Xylene	p-C6H4C2H6	
	Propionic acid	C2H5CO2H	
	n-Butyric acid	n-C3H7CO2H	
Acids	n-Valeric acid	n-C4H9CO2H	
	iso-Valeric acid	iso-C4H9CO2H	

Mixture Example

Common and C Madrice	Nominal Fraction Range			Urel (k=2)%	Shalf (yang)
Component & Matrix	From	То	Unit	Olei (K=2)%	Shelf (year)
Formaldehyde	2	20	µmol/mol	±2 ~ ±5	1 ~ 2
Hydrogen sulfide Methyl mercaptan	2 2	100 100	µmol/mol µmol/mol	±1 ~ ±5	1 ~ 2
				Determined in accordance with the customer's needs	

^{*} If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information.

E-mail: master@rigas.co.kr (Domestic-Korea), sales@rigas.co.kr (Overseas)

^{*} Urel.: relative expanded uncertainty

Volatile Organic Compound Standards (VOCs)

VOCs in certain period may cause long term damage on human health, so it shall be monitored.

The followings are calibration gas of volatile organic compound measuring system supplied by RIGAS Co., Ltd. and required and recommended generally.

Group	Components		
	Benzene	C6H6	
	Toluene	C/Hs	
	Ethylbenzene	GHsQHs	
	o-Xylene	o-C6H4C2H6	
Hydrocarbons Gas or Liquid Mixtures	m-Xylene	m-CaHaCzHa	
	p-Xylene	p-CsH4C2Hs	
	Styrene	CaHs	
	1,2-Dichlorobenzene	1,2-C6H4Cl2	
	1,2,4-Trimethylbenzeneetc.	1, 2, 4 - C ₆ H ₃ (CH ₃)3etc.	
	Trichloro fluoromethane	CCl ₃ F	
CEC. /UCEC. /UEC. / DEC.	Dichloro difluoromethane	CCl ₂ F ₂	
CFCs / HCFCs / HFCs / PFCs	1,1,2-Trichloro trifluoroethane	C2Cl3F3	
	1,2-Dichloro tetrafluoroethane	1, 2 - C2Cl2F4	
	Methyl chloride	CH3Cl	
	Ethyl chloride	C2H5Cl	
	Vinyl chloride	C2H3Cl	
<u> </u>	Methylene chloride	CH2Cl2	
Chlorinated Hydrocarbons	Chloroform	CHCl ₃	
	Carbon tetrachloride	CCl4	
	1,1-Dichloroethane	1, 1 - C2H4Cl2	
	1,2-Dichloroethaneetc.	1, 2 - C2H4Cl2etc.	

^{*} If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information. E-mail: master@rigas.co.kr (Domestic-Korea), sales@rigas.co.kr (Overseas)

^{*} Urel.: relative expanded uncertainty

Volatile Organic Compound Standards (VOCs)

VOCs in certain period may cause long term damage on human health, so it shall be monitored.

The followings are calibration gas of volatile organic compound measuring system supplied by RIGAS Co., Ltd. and required and recommended generally.

Mixture Example

Commonant & Matrix	Nom	Nominal Fraction Range			Shelf (year)
Component & Matrix	From	То	Unit	Urel (k=2)%	Sileir (year)
Benzene	1	100	µmol/mol	±1 ~ ±5	1~2
Toluene	1	100	µmol/mol		
Ethylbenzene	1	100	µmol/mol		
o-Xylene	1	100	µmol/mol		
m-Xylene	1	100	µmol/mol		
p-Xylene	1	100	µmol/mol	Determined in accordance with the customer's needs	
Styrene	1	100	µmol/mol		
Nitrogen	balance				

Composed 9 Matrice	Nom	Nominal Fraction Range			Shelf (year)
Component & Matrix	From	То	Unit	Urel (k=2)%	Sileii (yeai)
Vinyl chloride	5	10	µmol/mol	±2 ~ ±3	1~2
1,3-Butadiene	5	10	µmol/mol		
Dichloromethane	5	10	µmol/mol		
Acrylonitrile	5	10	µmol/mol		
Chloroform	5	10	µmol/mol		
Carbon tetrachloride	5	10	µmol/mol		
Benzene	5	10	µmol/mol		
1,2-Dichloroethane	5	10	µmol/mol		
Trichloroethylene	5	10	µmol/mol		
Tetrachloroethylene	5	10	µmol/mol		
Ethylbenzene	5	10	µmol/mol		
Styrene	5	10	µmol/mol	Determined in accordance with the customer's needs	
Aniline	5	10	µmol/mol		
Nitrogen	balance				

^{*} If you have any inquiry on products and mixing besides the above components and concentration, ask for consultation and we will provide further information.

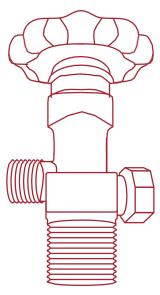
E-mail: master@rigas.co.kr (Domestic-Korea), sales@rigas.co.kr (Overseas)

^{*} Urel.: relative expanded uncertainty

Other Gas Mixtures

RIGAS Co., Ltd. also supplies illuminating gas, rare gas or semiconductor gas mixture according to various customer needs. We, RIGAS Co., Ltd., will produce gas according to your order.

- Illuminating Gas Mixtures
- Semiconductor Gas Mixtures
- Research and Development Gas Mixtures
- High Purity Gases

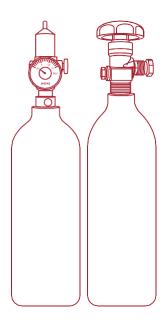

- Toxic Gases
- Rare Gases
- Hydrocarbons
- Etc.

Cylinder

Material	Size	Material	Size
Steel	3.4 L	Aluminum	1 L
	10 L		3.7 L
	15 L		10 L
	40 L		15 L
	47 L		30 L
	118 L		ETC.
	ETC.		-

Valve

Standard	Specification	Material	
JIIS	W22mm-14th -RH	Decay Ni Diated CUC	
	W22mm-14th -LH	Brass, Ni-Plated, SUS	
	W23mm-14th -RH	Brass	
	CGA 350	Brass, Ni-Plated, SUS	
CC4	CGA 510	Brass	
CGA	CGA 180	SUS	
	C10 Valve Ni-Plated		
BS	Valve connector is available		
DIN	Valve connector is available		


^{*} The above cylinders and valves may be limited depending on the components requested by a customer. Details will be delivered when an estimate is provided.

rigas | ONE

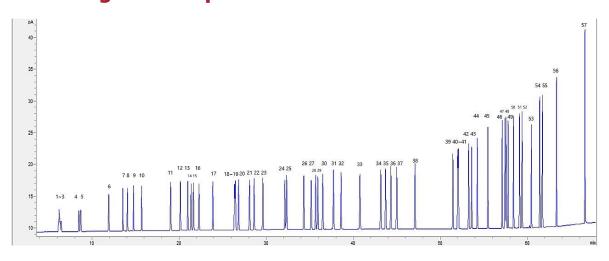
RIGAS 1L standard gas with refillable and high-pressure cylinders.

Non-reactive gas

Components	Concentration	Unit
iso-Butane	0.9	cmol/mol
Oxygen	15	cmol/mol
Oxygen	18	cmol/mol
Carbon monoxide	50	µmol/mol
Carbon monoxide	75	µmol/mol
Hydrogen	2	cmol/mol
Methane	2.5	cmol/mol
Methane	2.2	cmol/mol
Propane	0.525	cmol/mol
Propane	1.1	cmol/mol
Nitrogen	99.999	cmol/mol

Reactive gas

Components	Concentration	Unit
iso-Butylene	10	µmol/mol
iso-Butylene	100	µmol/mol
Nitric oxide	18	µmol/mol


rigas IONE PAMS 57 Components mix (Ozone Precursor)

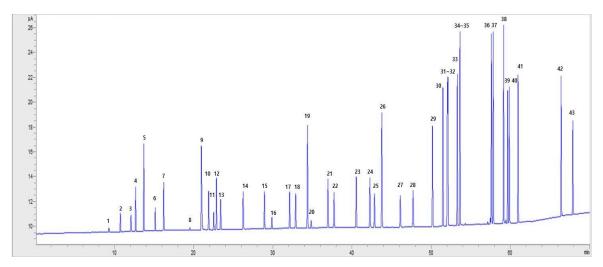
VOCs measured by the Photochemical Assessment and Measurement Station (PAMS) as precursors contributing to ozone generation.

Special features

- 1 µmol/mol (ppm) in Nitrogen, 110 L, 10 MPa 5 nmol/mol (ppb) in Nitrogen, 110 L, 10 MPa
- Highly convenient and portable small 1L container
- Highly reliable values proven through short-term/long-term stability assessment
- Manufactured in accordance with KS I ISO 6142 (Gas analysis-Preparation of calibration gas mixture-Gravimetric method)
- Cylinders with special internal treatment
- Validity period of 12 months
- Precise measurement of components with low-vapor pressure and additional cylinder heating/regulator heating devices

Chromatogram & components

1~10	11~20	21~30	31~40	41~50	51 ~ 57
Ethylene	Isopentane	3-Methylpentane	2,2,4-Trimethylpentane	p-Xylene	1,2,4-Trimethylbenzene
Acetylene	1-Pentene	1-Hexene	n-Heptane	Styrene	n-Decane
Ethane	n-Pentane	n-Hexane	Methylcyclohexane	o-Xylene	1,2,3-Trimethylbenzene
Propylene	isoprene	Methylcyclopentane	2,3,4-Trimethylpentane	n-Nonane	m-Diethylbenzene
Propane	trans-2-Pentene	2,4-Dimethylpentane	Toluene	isopropylbenzene	p-Diethylbenzene
isoButane	cis-2-Pentene	Benzene	2-Methylheptane	n-Propylbenzene	n-Undecane
1-Butene	2,2-Dimethylbutane	Cyclohexane	3-Methylheptane	m-Ethyltoluene	n-Dodecane
n-Butane	Cyclopentane	2-Methylhexane	n-Octane	p-Ethyltoluene	-
trans-2-Butene	2,3-Dimethylbutane	2,3-Dimethylpentane	Ethylbenzene	1,3,5-Trimethylbenzene	-
cis-2-Butene	2-Methylpentane	3-Methylhexane	m-Xylene	o-Ethyltoluene	-


rigas | ONE TO-14A 43 Components mix (Toxic Organics)

VOCs according to the US Environmental Protection Agency (EPA) standards as hazardous air pollutants in the atmosphere

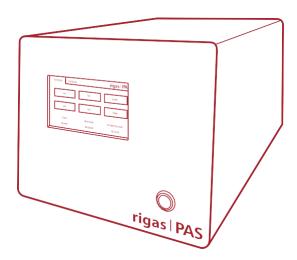
Special features

- 1 µmol/mol (ppm) in Nitrogen, 110 L, 10 MPa 10 nmol/mol (ppb) in Nitrogen, 110 L, 10 MPa
- Highly convenient and portable small 1L container
- Highly reliable values proven through short-term/long-term stability assessment
- Manufactured in accordance with KS I ISO 6142 (Gas analysis-Preparation of calibration gas mixture-Gravimetric method)
- Cylinders with special internal treatment
- Validity period of 12 months
- Precise measurement of components with low-vapor pressure and additional cylinder heating/regulator heating devices

Chromatogram & components

1~9	10~18	19~27	28~36	37~43
Dichlorodifluoromethane	1,1-Dichloroethene	Benzene	Tetrachloroethylene	1,3,5-Trimethylbenzene
Chloromethane	Methylene Chloride	Carbon Tetrachloride	Chlorobenzene	1,2,4-Trimethylbenzene
Freon-114	3-Chloropropene	1,2-Dichloropropane	Ethylbenzene	1,3-Dichlorobenzene
Vinyl chloride	Freon-113	Trichloroethylene	p-Xylene	1,4-Dichlorobenzene
1,3-Butadiene	1,1-Dichloroethane	cis-1,3-Dichloropropene	m-Xylene	1,2-Dichlorobenzene
Bromomethane	cis-1,2-Dichloroethylene	trans-1,3-Dichloropropene	Styrene	1,2,4-Trichlorobenzene
Chloroethane	Chloroform	1,1,2-Trichloroethane	o-Xylene	Hexachloro-1,3-Butadiene
Freon-11	1,2-Dichloroethane	Toluene	1,1,2,2-Tetrachloroethane	-
Acrylonitrile	1,1,1-Trichloroethane	1,3-Dibromoethane	4-Ethyltoluene	-

rigas I PAS Pre Analysis System


Pre Analysis System (PAS), a cleaning system that removes corrosive and adsorbent substances within sample introduction parts and equipment before/after analysis.

Special features

- Reduces analysis time: Rapidly removes previously analyzed components
- Reduces maintenance cost of analysis equipment: Removes air and moisture from systems before use
- Improves analysis accuracy: Delivers accurate analysis values by reducing effects of reactive/adsorbent components.
- Easy to use : Simple touch display

When to use

- Frequent system corrosion
- When using different types of gas
- If accurate analysis values are required
- In laboratory settings where equipment management is important

Specification

Size (H×W×D)	18 cm×22 cm×35 cm	Display	4.3 inch	
Port size	1/8 inch	Power	220 V	
Mode	Composed of M mode, MANUAL mode			

Research Institute of Gas Analytical Science

earch Institute of Gas Analytical Science

RIGAS Regulator for Calibration Gases

Special features

• 1Stage(Single-stage) and 2Stage(Double-stage) Construction

Body: Brass(Ni-Plated), SUS316L

•Seat:PCTFE/PTFE

Diaphragm: SUS316L/Hastelloy

•Stem:SUS316L

• Temperature Range : -40° C ~ 74° C

Inlet and outlet port size: 1/4 Inch NPT

• Maximum Inlet Pressure: 25 MPa

Typical Application

- Research Laboratories
- Gas Chromatography
- Laser Gas System
- Process Analyzer
- Zero & Calibration Gases
- Purging Systems
- In use for Calibration gas of HCl, Amine, BTEX, HCHO, HF, etc.

Order Information

Series	Material	Stage	Inlet pressure gauge	Pressure control range	Inlet connections (Nut type)	Outlet connections (Male connector)
G	S : SUS316L B : Brass (Ni-Plated)	1:1stage 2:2stage	25 : 25 MPa	06:0.6 MPa 10:1.0 MPa	R : 22 mm-RH L : 22 mm-LH C : CGA180	0: no option 1:1/4" LOK 2:1/8" LOK
S	S : SUS316L	1:1stage			N : no option E : etc.	3:1/16"LOK 4:etc.

20 Components Subjected to Measure Calorific Value at Flare stack

The flare system is a process for combusting exhaust gases generated at industrial sites, such as refineries and chemical plants.

To properly control these hazardous materials, a monitoring system capable of evaluating the performance of the flare system is required.

As the parts of the monitoring system, 20 components of hazardous air pollutants are designated to measure its calorific value, as shown below.

Verifying the emission status, one of the following methods must be selected: Mass spectrometry, Gas chromatography, or Calorific value analysis.

	ин	No	ominal Fraction Ran	ge
No.	성분	From	То	Unit
1	Benzene	1	100	µmol/mol
2	Toluene	1	100	µmol/mol
3	o,m,p-Xylene	1	100	µmol/mol
4	Styrene	1	100	µmol/mol
5	Ethyl benzene	1	100	µmol/mol
6	1,3-Butadiene	1	10	µmol/mol
7	Propylene oxide	1	10	µmol/mol
8	Ethylene oxide	1	10	µmol/mol
9	Phenol	1	10	µmol/mol
10	Carbon tetrachloride	1	10	µmol/mol
11	Dimethyl disulfide	1	10	µmol/mol
12	Aniline	1	10	µmol/mol
13	Chloroform	1	10	µmol/mol
14	Formaldehyde	1	20	µmol/mol
15	Acetaldehyde	1	10	µmol/mol
16	Naphthalene	1	10	µmol/mol
17	Dichloro methane	1	10	µmol/mol
18	1,2-Dichloro ethane	1	10	µmol/mol
19	Trichloro ethylene	1	10	µmol/mol
20	Acrylo nitrile	1	10	µmol/mol

^{*} For components: Phenol and Naphthalene, µmol/mol of Methanol is included.

㈜리가스 www.rigas.co.kr

E-mail. master@rigas.co.kr Tel. 042-934-6900(0) Fax. 042-935-8814 Address. 대전광역시 대덕구 대덕대로1284번길 17(신일동) 우편번호 34323

RIGAS Co., Ltd. www.rigas.co.kr/eng

E-mail. sales@rigas.co.kr Tel. +82-70-5031-6962 Fax. +82-42-935-8814 Address. 17, Daedeokdae-ro 1284beon-gil, Daedeok-gu, Daejeon, Korea(South), 34323

韩气科研 www.rigas.co.kr/ch/

E-mail. sales@rigas.co.kr Tel. +82-70-5031-6962 Fax. +82-42-935-8814 Address. 大韩民国 大田广域市 大德区 大德大路 1284番街 17 (新一洞) 邮编 34323

